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Mutations in. the p53 gene are common in lung cancer. Using data from the the International
Agency for Research on Cancer p53 mutation database (R1), we. have analyzed the distribution
and nature ofp53 mutations in 876 lung tumors described in the literature. These analy con-
firm that G to T transitions are the predominant pe ofp53muton in lug cancer from smok-
ers. The most frequendy. mutato. codons indude 157, 158, 179,-248, 249, and 273, and several
of them (157, 248, and 273) have been shown to correspond to sites of in vito DNA adduct for-
mation by metabolites of polycyclic aromatic hydrocarbons (PAHs) such as benzo(a)pyrene.
Furthermore., most of the base changs at codons 248, 249, and 23 in lung cancer difler from
those commonly observed at these codons in other cancern reported in the datbase. Thus, lung
cancer from smokers shows a distinct, uniquep53 mutation spectrum that is not observed in lung
cancer from nosmokes. These results further en the asion been active smokig,
exposure to PAHs, and lung cancer. They aso indicate that ade pattern of mutations
occurs in nonsmokers, and this obsevation may help to identify other agents causally involved in
lung.cancer in nonsmokers. Key wonr. benz(a)pyrene, lung cancer, nonsmokers, p53 mutations,
tobac'co. Environ HealthPpce106:385-391 (1998). [Oline 10june 1998]
hatp://ehpnetl .nies.nih.gov/ldosa998/106p385-391h~aand&/abstract.html

Lung cancer is the leading cause of death in
developed countries and is considered as one
of the most common cancers worldwide
(1-3). Tobacco smoking has been identified
as a major risk factor for the development of
this cancer (4-6). Overall, recent cohort
studies show that the risk of death from lung
cancer in smokers of two or more packs of
cigarettes per day is about 20 times that of
nonsmokers (5,6). Tobacco smoke is a com-
plex mixture that contains about 3,800 dif-
ferent potentially harmful chemicals (7).
Several of these chemicals are proven car-
cinogens and occur at significant concentra-
tions in tobacco smoke. These chemicals
include benzo(a)pyrene [BaP, a polycyclic
aromatic hydrocarbon (PAH)] at 20-40
ng/cigarette, N-nitroso compounds at up to
200-3,000 ng/cigarette, 4-aminobiphenyl
(an aromatic amine) at 2.4-4.6 ng/cigarette,
and vinyl chloride at 1.3-16 ng/cigarette
(8,9). The exact contribution of each of these
various carcinogens to lung cancer induced
by tobacco smoke is poorly understood.

Deletion and point mutations in the
p53 tumor suppressor gene are common in
most types of human cancers, including
lung cancer. Missense mutations occur at
about 300 distinct positions within the p53
coding sequence. The diversity of positions
and chemical natures of these mutations
allows the determination of tumor-specific
mutation spectra that can provide clues to
the nature of the mutagenic agents which
are involved as causative agents (10-12). To
facilitate the analysis and interpretation of
these mutations, a databjse of p53 muta-
tions in human tumors and cell lines is

maintained at the International Agency of
Research on Cancer (IARC). This data-
base, initiated in 1991 by Hollstein et al.
(13), is exclusively based on published
material and contains about 8,000 somatic
mutations in an electronic format (14).

To determine whether the spectrum of
p53 mutations may aid in understanding
the role of carcinogens associated with
tobacco smoke, we have carried out
detailed analyses of the mutations associat-
ed with lung cancer compiled in the IARC
p53 mutation database (849 cases). We
have reviewed these data in the light of
recent progress in our understanding of the
mechanisms of 1) selective adduct forma-
tion in the p53 coding sequence, 2) strand-
specific and position-specific DNA repair,
and 3) selection of mutant proteins with
specific functional properties. Our analyses
confirm and extend previous reports that
G to T transversions are specifically found
in tumors from smokers (11). Moreover,
we have retrieved data on p53 mutations in
36 nonsmokers; analysis of these mutations
shows a unique spectrum of mutations,
different from lung cancer from smokers as
well as from all other cancers.

Methods
Point mutations in the p53 gene of human
tumors and cell lines were extracted from
the IARC p53 mutation database. This
database is updated twice a year, and for
this analysis we used the January 1998
update (R1; 8,000 mutations). The data-
base exists in different electronic formats
available on the World Wide Web

(http.//www.iarc.frI/p53/homepage.htm) and is
deposited at the European Biolnformatic
Institute (EBI; http://www.ebi.ac.uk). For
analysis of the database, we developed a pro-
gram using FileMaker Pro 3.0 (Claris
Corporation, Santa Clara, CA) that is
described on our database web site and pub-
lished elsewhere (14). The database contains
information on 876 mutations in lung
tumors. These mutations were compared
with those found in breast tumors (729
cases) and colon tumors (900 cases) because
they occur at high frequencies in the general
population, they frequently contain p53
mutations [approximately 50% in colon
cancer (11), and 15-40% in breast cancer
(15)], and they are well represented in the
LARC p53 database.

The database is based on published
records and does not contain information
on tumors without p53 mutations. When
information was provided on the smoking
status of individual patients with lung can-
cer, the tumors were classified into two
groups: ever smoked (236 cases) and never
smoked (36 cases). Information on sex was
available for 13% of the cases (81 males and
32 females). For the classification of the dif-
ferent lung cancer pathologies, we used the
terminology given in each individual paper.
The classification of the 876 lung tumors,
as well as the availability of information on
smoking, is given in Table 1.

The X2 test was used for statistical analy-
ses. When expected values in the x2 test were
less than 5, Fisher's exact test was used.

Results
High frequency ofG to T transversions. In
lung cancer, p53 missense mutations are
detected in about 60% of the tumors, and
about one-third of these mutations have been
reported as G to T transversions (11). Figure
1 compares the spectrum of mutations in lung
cancer with all other cancer types. Lung can-
cer shows a significantly higher proportion of
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G to T transversions, 33% in lung and 13%
in other cancers (X 2 = 228.74; p<O.OOl), and
a lower proportion of C to T transitions at
CpG dinucleotides (10% and 26%, respec-
tively x2 = 113.10; p<0.001). Of all the can-
cers listed in the IARC p53 database, lung
cancer shows the lowest frequency of C to T
transitions at CpG dinucleotides; in breast
and colon cancers, these transitions represent
21% and 45%, respectively. As C to T transi-
tions at CpG dinucleotides are thought to
result from methylation and spontaneous
deamination of cytosine, they are commonly
considered as a representative of the propor-
tion of mutations due to endogenous mecha-
nisms (16).

Of the 287 G to T transversions found
in lung cancer, 93% occur on the coding,
nontranscribed strand, a percentage higher
than initially reported by Greenblatt et al.
(11). In breast and colon cancers, this strand
bias is less marked, with only 80% and
77%, respectively, of G to T transversions

on the nontranscribed strand. In contrast
with G to T transversions, most other types
of mutations are more equally distributed
on both strands in lung cancer, with the
exception of A to G transitions, of which
88% occur on the noncoding strand. The
significance of these strand biases is not
clearly understood. In agreement with the
concept of transcription-coupled repair, it
has been postulated that the nontranscribed
strand is repaired less efficiently than the
transcribed strand. However, it cannot be
ruled out that this phenomenon reflects the
distribution of mutable sites over the two
strands (17). In experimental systems,
Palombo et al. (18) and McGregor et al.
(19) have shown that GC to AT transitions
induced by alkylating agents were preferen-
tially located on the nontranscribed strand,
independently of the transcriptional activity
of the gene. Recently it has been shown that
adducts formed by BaP on the nontran-
scribed strand of the p53 gene also show

Table 1. Lung cancer types, smoking status, and sex as reported in the IARC p53database

Pathology
Adenocarcinoma
Squamous cell carcinoma
Large cell carcinoma
Small cell lung carcinoma
Non-small cell lung carcinoma
Other"
Not specifiedb
Total

Total
cases

169
217
73
116
214
17
70

876

Smoked
Ever Never
69 18
108 7
35 1
9 0
0 0
1 1

14 9
236 36

Sex
Male Female
16 11
19 8
14 5
29 6
0 0
3 2
0 0

81 32

8includes mixed lung cancertypes (squamous cell carcinoma/adenocarcinoma) as well as other types occurring in the lung (e.g., mesothelioma
and angiosarcoma).
bLung cancer for which no specific histological information was given.
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Figure 1. Comparison of the p53 mutation spectrum in lung cancer with all other cancers in the IARC p53
database. Mutations are classified as transitions or transversions affecting G:C base pairs or A:T base
pairs. Abbreviations: C to T, GC to AT transitions; G to T, GC to TA transversions; A to C, AT to CG transver-
sions; A to G, AT to GC transitions; A to T, AT to TA transversions; Other, insertions, deletions, and com-
plex mutations.
*Significant at p<0.001.

slower repair kinetics than those formed on
the transcribed strand (20,21). Repair effi-
ciency could thus contribute strongly to the
p53 mutation spectra in lung cancer.

The high prevalence of G to T transver-
sions, as well as the strand bias in the distrib-
ution of these mutations, is highly suggestive
of the involvement of exogenous carcino-
gens as direct mutagens (11,22). In experi-
mental systems and in several cancers other
than lung, G to T transversions have been
shown to result from the mutagenic effect of
several distinct classes of agents including
PAHs, aromatic amines, mycotoxins such as
aflatoxin B,, ionizing radiation, and oxi-
dants (11,23,24). G to T transversions are
also minor mutations caused by some N-
nitroso compounds such as 4-(methylni-
trosamino)-1-(3-pyridyl)-1 -butanone
(NNK) (25), which cause predominantly G
to A transitions. With the exception of afla-
toxin BI and ionizing radiation, most of
these classes of agents are present at signifi-
cant levels in tobacco smoke.

Differences between histological types of
lung cancers. The various histological types
of lung cancer differ by the spectrum ofp53
mutations. Although all types have a higher
than average proportion ofG to T transver-
sions, this proportion is significantly lower
in adenocarcinomas (ADC; 27%) than in
squamous cell carcinomas (SCC; 33%) or in
small cell lung carcinomas and large cell car-
cinomas (SCLC and LLC, respectively;
41%) [Fig. 2; in this figure we have not
taken into account the tumors identified in
the database as non-small cell lung carcino-
mas (nSCLC), as they may include ADC
and SCC]. Interestingly, SCLC and LCC
also show a low proportion of transitions at
CpG sites compared with ADC and SCC.
These percentages are somewhat different
from those reported in previous smaller
studies. Based on 15 ADC and 26 SCC,
Kure et al. (26) reported frequencies ofG to
T transversions of34% in ADC and 31% in
SCC. In a series of 52 SCC and 43 ADC
from Finland, Husgafvel-Pursiainen et al.
(27) found 29% of G to T transversions in
SCC and 46% in ADC. Both studies sug-
gested that G to T transversions were more
common in ADC than in SCC. Analysis of
the IARC p53 mutation database, however,
reveals a reverse trend (Fig. 2). ADC is con-
sidered to be less strongly associated with
smoking than SCC or SCLC, and ADC has
a higher prevalence than SCC or SCLC
among nonsmokers (28,29).

p53 Mutations occur at binding sitesfor
benzo(a)pyrene. The most frequently p53
mutated codons in lung cancer are 157,
158, 179, 248, 249, 273, and 282 (Figure
3). Three of these codons (248, 249, and
282) are major mutational hot spots in most
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cancer types. In contrast, codon 175, which
is frequently mutated in most cancers, is not
a hot spot in lung cancers. Table 2 compares
the frequency of mutations at various hot
spot codons in lung, breast, and colon can-
cers. Comparing the three cancer profiles,
breast cancer shows an intermediate profile
with lung and colon cancers at the opposite
extremes. By statistically comparing lung
cancer with these two other cancers, we find
a significantly higher frequency of mutations
at codons 157 (x2 = 16.24; p<0.001), 158
(X2 =37.57; p<0.001), 179 (X2 =5.69;
p<0.05), and 249 (X2 =21.22; p<0.001) in
lung cancer. The reverse is true for codon
175, which is a hot spot in most cancers, but
not in lung cancer (X2 =41.20; p<0.00 1).

Recently, Denissenko et al. (30,31)
have shown that experimental exposure of
Hela cells or bronchial epithelial cells in
primary culture to BaP resulted in strong
and selective adduct formation on gua-
nines at p53 codons 157 (GTC), 248
(CGG), and 273 (CGT). Most of the
mutations at codon 158 are also G to T on
the nontranscribed strand. However,
codon 179 does not contain a guanine on
the nontranscribed strand, and the most
frequent mutation at this codon is an A to
G transition at the second position. This
position does not correspond to a potential
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target of BaP in experimental systems, and
it is likely that this mutation may be due
to another mutagenic component of
tobacco smoke (30).
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Figure 2. Comparison of the mutation spectra of p53 in lung cancer among the different reported patholo-
gies. Mutations are classified as transitions or transversions affecting G:C base pairs or A:T base pairs.
Abbreviations: C to T, GC to AT transitions; G to T, GC to TA transversions; A to C, AT to CG transversions;
A to G, AT to GC transitions; A to T, AT to TA transversions; Other, insertions, deletions, and complex
mutations; ADC, adenocarcinoma; SCC, squamous cell carcinoma; LCC, large cell carcinoma; SCLC, small
cell lung carcinoma.

Figure 3. Comparison of the p53 hot spots in lung cancer with all cancers in the IARC p53 database. The distribution. of mutations in the p53 coding sequence is
shown, with the size of bars representing the frequency of mutations at a particular codon. Hot spot codon numbers are shown (11).

Environmental Health Perspectives * Volume 106, Number 7, July 1998 387



Reviews * Hernandez and Hainaut

between lung cancer and colon or breast
cancers. However, examination of the type
of mutations in lung cancer at these com-
mon hot spots shows a unique mutation
spectrum unlike that found in other can-
cers (Figs. 4 and 5). In breast and colon
cancers, codons 248 and 273 are almost
exclusively mutated by C to T transitions

Table 2. Frequency of p53 mutations at specific hot
spot codons in lung, breast, and colon cancers

Codon
157*
158*
175*
179
248
249*
273

Lung
(n= 876)

3.31
3.42
1.60
3.20
3.76
5.14
6.05

Breast
(n= 729)

0.82
0.00
5.08
2.47
4.66
1.92
6.45

Colon
(n= 900)

1.22
0.67
10.00
1.11

13.00
1.56
1.56

Values shown are percent.
*Significant at p<0.001.

at CpG dinucleotide sites, with G to T
transitions being extremely rare. However,
in lung cancer, about half of the mutations
at codons 248 and 273 are G to T transver-
sions, resulting in a mutation profile that
differs significantly from breast and colon
cancers (codon 248: X2 = 57.79; p<0.001
and codon 273: X2 = 57.34; p<0.001) (Fig.
4). Taken together, these observations and
those in Figure 2 indicate that G to T
transversions in lung cancer result from the
selective occurrence of BaP diol epoxide
(BPDE)-DNA adducts at specific G posi-
tions within CpG sites. It is believed that
this selective occurrence is favored by the
presence of 5-methylcytosine adjacent to
the target G position (31).

Codon 249 also demonstrates a distinct
mutation profile in lung cancer. Codon 249
(AGG, arginine) is not a CpG site, and
90% of all p53 mutations at this codon are
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Figure 4. Patterns of p53 mutations at codon 248 (A) and codon 273 (B) in different cancers. Mutations are
classified into three different categories: G to T transversions, C to T at CpG transitions, and Other (all
other mutation types).
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Figure 5. Patterns of p53 substitutions at codon 249 in lung, breast, and colon cancers and in hepatocellu-
lar carcinoma (HCC).

G to T transversions. Mutation of the third
G position (AGG to AGT, arginine to ser-
ine) is considered as a specific fingerprint of
aflatoxin Bi in hepatocellular carcinomas
from areas around the world, where this
mycotoxin is a major food contaminant
(32). However, in lung cancer, over 45% of
the G to T transversions occur at the sec-
ond G position (AGG to ATG, arginine to
methionine). This particular mutation is
very specific to lung cancer and rarely
occurs in colon and breast cancers (X 2
=15.23; p<0.001) (Fig. 5). Experimentally,
codon 249 does not appear to be a major
target of BPDE-DNA adduct formation
(3Q). This observation suggests that the sec-
ond G position of codon 249 may be a spe-
cific target for a carcinogen from tobacco
smoke other than BaP. Furthermore, about
one-third of the codon 249 mutations in
lung cancer originate in uranium miners
(33) and were reported as a radon hot spot.
To date, this hot spot has not been con-
firmed by two other studies of uranium
workers (34,35); therefore, the etiology of
mutations at codon 249 in lung cancer is
still unclear.

p53 Mutations in nonsmokers. In a
study of 53 lung cancer patients, Kondo et
al. (1) reported a statistically significant dose
relationship between the quantity of ciga-
rettes consumed and the frequency of p53
mutations as determined by RT-PCR-SSCP
(reverse-transcription-polymerase chain
reaction single strand confirmation poly-
morphism). In another study, Husgafvel-
Pursiainen and Kannio (36) found a muta-
tion frequency of28% in nonsmokers, 38%
in ex-smokers, and 56% in current smokers.
However, the exact type of mutation in
these patients has not been determined by
sequencing.

Information on smoking status is avail-
able for 236 lung cancer patients in the p53
mutation database, of whom 36 are non-
smokers. In nonsmokers, mutations occur at
different codons than in smokers. In particu-
lar, the major sites of BPDE-DNA adduct
formation in vitro (codons 157, 248, and
273) are not frequently mutated in non-
smokers. However, the most frequently
mutated codons in nonsmokers (codons 179
and 249) are also hot spots in smokers.
Figure 6 compares the mutation spectrum in
smokers and nonsmokers. Nonsmokers sig-
nificantly differ from smokers by the lower
proportion of G to T transversions (X2
=7.83, p<0.002) and the higher proportions
G to C transversions (X2=15.08; p<0.001)
and G to A transitions at CpG dinudeotides
(although not statistically significant).
Therefore, both the spectrum and codon dis-
tribution of p53 mutations in nonsmokers
do not correspond to the BaP fingerprint
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identified in smokers. Furthermore, the pro-
portion of G to A transitions at non-CpG
sites is equally high among the two dasses. In
addition, there is a much higher proportion
of G to C transversions. Together, these
observations are indicative of the possible
involvement of exogenous mutagens. Little
information is available on individual risk
factors in connection with the 36 nonsmok-
ing lung cancer patients induded in the data-
base. However, it is noteworthy to mention
that 17 of these nonsmokers are ofAsian ori-
gin, induding 13 Japanese (6 of them atom-
ic-bomb survivors) and 4 Chinese, with over
48% of the nonsmokers falling in exon 5 of
thep53 gene (37).

Guinee et al. (38) and Kure et al. (26)
have reported a higher frequency ofG to T
transversions in women than in men; both
of these observations were based on a small
number of cases and were not significantly
different. In the IARC p53 mutation data-
base, information exists on 81 men and 32
women with p53 mutations in lung tumors.
Figure 7 shows that in our analyses we also
find that women have a higher frequency of
G to T mutations and men a higher fre-
quency of G to A mutations at non-CpG
sites, although these spectra are not signifi-
cantly different. This coincides with the evi-
dence that women are more susceptible to
DNA damage from cigarette smoke and
other carcinogens (39). However, the num-
bers analyzed are still relatively small, and
larger study groups are needed to draw any
definite conclusions of p53 mutations in
men and women.

Conclusions
Carcinogens damage DNA in specific ways,
and in various circumstances their finger-
prints can be found in the mutations found
in DNA of cancer patients. DNA repair and
bioselection of mutants with particular prop-
erties can also contribute to the final spec-
trum of mutations observed in any particular
type of cancer. The extent ofDNA damage is
influenced by genetic susceptibility factors,
induding the capacity to metabolize carcino-
gens in exposed individuals (40). The analysis
of data on p53 mutations in lung cancer from
the IARC p53 database allows a better defini-
tion of the contribution of these three types
of factors to the mutation spectrum in
tumors associated with tobacco consumption.

This analysis confirms that G to T
transversions are frequent in lung cancer
from smokers, but not in nonsmokers.
This suggests that G to T transversions are
a molecular signature of mutagenesis by
tobacco smoke.

Although many carcinogens from tobac-
co smoke may induce such mutations, the
evidence suggests that one major class of

causative agents is PAHs, in particular BaP.
First, G to T transversions are consistently
found in a number of experimental model
systems after exposure to either tobacco
smoke or BaP, such as in Salmoned, where
80% of the mutations induced by cigarette
smoke are G to T transversions (41), in
human, hamster, and mouse diploid cells
(42,43), and in mouse skin (22). Second,
many of these mutations occur at bases in
codons 157, 248, and 273, which are strong
and specific sites for adduct formation by
metabolites of BaP in cultured cells (25,30).
These codons contain CpG repeats. Recent

evidence indicates the presence of 5-methyl-
cytosine in CpG sequences may strongly
enhance the formation of BPDE-DNA
adducts at the G position (31).

Upon absorption by target cells, BaP
requires metabolic activation by CYP2E1 to
generate compounds that form promuta-
genic DNA adducts. The most significant
metabolite is BPDE which preferentially
binds covalendy on the N2 position of gua-
nine (44). Promutagenic BPDE-DNA
adducts are detectable in nontumorous and
tumorous lung tissue from smokers (7,26,
45-44). Furthermore, an association between
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Figure 6. Comparison of the mutation spectra of p53 mutations in lung cancer of smokers and nonsmokers.
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the genotype deficient in glutathione S-trans-
ferase MI enzyme (GSTM1)-mediated
detoxification and presence of G to T trans-
versions has been observed in lung cancer
patients (39). In persons who lack the
GSTMI gene, activation ofBaP appears to be
increased and the efficacy of detoxification is
limited (40). Together, these data strongly
suggest that BaP is implicated as a causative
agent in human lung carcinogenesis.

The mutation spectrum of p53 in lung
cancer from smokers is distinct from that of
any other cancer by both the nature and dis-
tribution of mutations. Even at codons that
are common hot spots, such as 248, 249,
and 273, the mutations in lung cancer differ
from those in other cancers. In most cancers,
cytosines in CpG sites at codons 248 and
273 are frequently mutated through sponta-
neous methylation and deamination. In con-
trast, in lung cancer these codons often show
mutations at the G position adjacent to the
methylated cytosine. This results in amino
acid substitutions that are very specific to
lung cancer, for example, arginine to leucine
at codons 248 and 273. However, G to T
mutations also occur at positions that are not
in CpG sites, such as at codon 157
(nudeotide position 469) and 249. For both
of these codons, the mutations observed in
lung cancer also differ from other cancers.
Codon 157 is rarely mutated in other can-
cers and may represent a specific hot spot
associated with tobacco-induced lung can-
cers. Codon 249 is a well-defined target for
mutations induced by aflatoxin B1 in hepa-
tocellular carcinoma (HCC) (32. In HCC,
mutations occur almost exclusively at the
third base (AGG to AGT), whereas in lung
cancer the mutations occur essentially on the
second base (AGG to ATG).

These observations further substantiate
the experimental data of Denissenko et al.
in bronchial cells (30,31). In addition,
Cherpillod and Amstad (48) showed BaP-
induced G to T transversions at the middle
position of codon 248 in an HCC cell line.
These data show the establishment of a
clear molecular link between a carcinogen
present in tobacco and specific p53 muta-
tions in lung cancer. However, this does
not rule out that other carcinogens from
tobacco smoke may also play a role as p53
mutagens, in particular, at codons such as
179 and 249, which are not demonstrated
sites of strong adduct formation by BPDE
in vitro (30,35). Furthermore, several
agents present in tobacco smoke may
increase the mutagenic effect of BaP by
enhancing the formation of BPDE-DNA
adducts (31) or by altering the efficiency of
DNA repair mechanisms.

Selective targeting alone does not account
for the complexity of the mutation spectrum

in lung cancer. Indeed, G to T transversions
in lung cancer occur almost exclusively on the
nontranscribed strand (94%). This may result
from a strand-specific difference in the effi-
ciency of nudeotide excision repair, in agree-
ment with the hypothesis of transcription-
coupled repair. However, experimental
demonstration of the role of transcription in
this process is still lacking.

Bioselection of mutants with particular
properties may also play a role. Detailed
analysis of mutations at codon 175 provides
an example for such functional selection.
Codon 175 contains a CpG site and is fre-
quently mutated in all cancers except lung
cancer. Experimental evidence reveals that
G to T mutations at this codon (CGC to
CTC, arginine to leucine) result in a
mutant protein that retains wild-type prop-
erties, such as the capacity to bind DNA
and to transactivate p53-dependent reporter
genes (4p). Thus, absence of mutations at
codon 175 in lung cancer may reflect a neg-
ative selection. In contrast, the high fre-
quency of mutations at codons 157 and
158 may reflect a positive selection mecha-
nism. These corresponding residues are not
part of the p53-DNA contact surface and
are not confirmed p53 mutational hot spots
in other cancers. More mechanistic studies
are needed to determine whether these
mutations have specific functional proper-
ties that may explain their selection.

Previously published information on
p53 mutations in nonsmokers is limited.
By compiling published information on
p53 mutations in nonsmokers, we present a
mutation spectra including 36 individual
cases. These data show that the mutation
spectrum in nonsmokers differs from those
in smokers. Moreover, the nature of muta-
tions in nonsmokers is consistent with
mutational mechanisms involving exoge-
nous carcinogens. These results should be
interpreted cautiously, as confounding fac-
tors cannot be ruled out due to the limited
number of cases. Moreover, half of the
nonsmokers are of Asian decent, and this
population may have a different genetic
susceptibility than the Western population.
One critical question is whether the type of
lung cancer in nonsmokers influences the
observed spectrum. Over 50% of the non-
smokers in this review are ADC patients;
however, comparison between smokers and
nonsmokers within ADC patients reveals
the same differences as shown in Figure 6.

In a recent paper, Gao et al. (5Q) ana-
lyzed p53 mutations in Chinese lung cancer
patients from 10 smokers and 17 nonsmok-
ers. They found a total of 107 mutations,
with 59 in the 17 nonsmokers. Individual
tumors were found to contain up to 14
mutations, an unusual phenomenon that

has no equivalent in the IARC p53 muta-
tion database. On the basis of their results,
the authors concluded that there is no dif-
ference in the frequency ofG to T transver-
sions between smokers and nonsmokers.
We consider that these data should be taken
cautiously, as they may reflect either a very
peculiar population or be the result of labo-
ratory artifacts.

The molecular basis of the mutation
spectrum in nonsmokers is unknown.
Epidemiological studies have pointed to roles
of passive smoking, environmental radiation,
and occupational exposure to metals
(29,51,52). Further studies are required to
indicate whether p53 mutations in non-
smokers carry specific fingerprints of any of
these factors. However, our observations can-
not be interpreted as ruling out the role of
passive smoking in the genesis of this cancer.
Indeed, tobacco carcinogens other than BaP
may play a significant role in tumors associ-
ated with passive smoking. In this respect,
cancers other than lung cancer, which are
associated with tobacco consumption (such
as oral cavity and bladder and esophagus
cancers in Western countries), do not show
as high a frequency of G to T transversions
in p53 as seen in lung cancer (11).

In summary, these analyses show that
p53 mutations in lung cancer from smok-
ers carry highly significant fingerprints of
exposure to tobacco smoke components, in
particular BaP. These fingerprints are not
found in nonsmokers, which therefore
leaves open the possibility that distinct
tobacco or environmental carcinogens may
also play an important role in the
etiopathology of lung cancer.
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